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Vitamin B12 (hereafter referred to as B12) deficiency in pregnancy is prevalent and has been associated with
both lower birth weight (birth weight <2,500 g) and preterm birth (length of gestation <37 weeks). Nevertheless,
current evidence is contradictory. We performed a systematic review and a meta-analysis of individual partici-
pant data to evaluate the associations of maternal serum or plasma B12 concentrations in pregnancy with off-
spring birth weight and length of gestation. Twenty-two eligible studies were identified (11,993 observations).
Eighteen studies were included in the meta-analysis (11,216 observations). No linear association was observed
between maternal B12 levels in pregnancy and birth weight, but B12 deficiency (<148 pmol/L) was associated
with a higher risk of low birth weight in newborns (adjusted risk ratio = 1.15, 95% confidence interval (CI): 1.01,
1.31). There was a linear association between maternal levels of B12 and preterm birth (per each 1-standard-
deviation increase in B12, adjusted risk ratio = 0.89, 95% CI: 0.82, 0.97). Accordingly, B12 deficiency was asso-
ciated with a higher risk of preterm birth (adjusted risk ratio = 1.21, 95% CI: 0.99, 1.49). This finding supports
the need for randomized controlled trials of vitamin B12 supplementation in pregnancy.

low birth weight; pregnancy; preterm birth; systematic review; vitamin B12

Abbreviations: B12, vitamin B12; BMI, body mass index; CI, confidence interval; IPD, individual participant data; LBW, low birth
weight; SGA, small for gestational age.

Globally, preterm birth and low birth weight (LBW)
cause more than a third of the 2.9 million neonatal deaths
each year, and prevention of these events is an important
component of reducing the mortality rate among children
younger than 5 years of age (1, 2). The causes of preterm
birth, however, are complex, and few interventions have
been successful in preventing it (3).

Vitamin B12 (hereafter referred to as B12) is a vitamin
with metabolic roles closely related to those of folate and
homocysteine, and it is found in animal-derived foods only
(4). It is important for the synthesis (5) and methylation
(6) of DNA, and it plays a role in the energy production

of the cell (7). It has been hypothesized that B12 may
affect placentation and fetal growth (8). B12 deficiency
may affect more than three-quarters of some pregnant
populations (9).

Few studies of B12 supplementation during pregnancy
have been undertaken to assess possible effects on birth
weight and length of gestation. However, in a recent meta-
analysis, Haider and Bhutta (10) concluded that multiple-
micronutrient supplementation may reduce the risk of LBW
and the number of stillbirths but not the risk of preterm birth
or neonatal mortality. Thus, a more targeted micronutrient
supplementation practice may be warranted.
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Our aim in this systematic review and individual partici-
pant data (IPD) meta-analysis was to study whether maternal
serum or plasma B12 levels in pregnancy were associated
with birth weight and length of gestation. Results from indi-
vidual studies have conflicted. In a recent systematic review
that included traditional meta-analyses, the authors were
unable to conclude whether maternal B12 levels were asso-
ciated with offspring birth weight (9). However, high hetero-
geneity in the meta-analyses, dependence among some of
the included studies, and reporting bias may have biased the
results. We collected IPD and single-study estimates from
eligible studies in order to pool effects across all studies in a
meta-analysis. This approach allowed for exploration of con-
founding factors and evaluation of preplanned subgroup
effects.

METHODS

The systematic review and meta-analysis was reported ac-
cording to the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) and Meta-Analysis
of Observational Studies in Epidemiology (MOOSE) guide-
lines (11, 12), and the protocol was registered at the
International Prospective Register of Systematic Reviews
(PROSPERO) (13). This study was approved by the Regional
Committee for Medical and Health Research Ethics of
Norway. The studies included in this review were approved
by their respective regional ethics committees.

Study inclusion criteria

We included studies in which the associations of maternal
B12 in serum or plasma during pregnancy with birth weight
or gestational age at delivery were assessed. Only studies of
a longitudinal cohort design were eligible for this review. In
order for a study to be eligible to be included, information
on birth weight had to be registered at birth (it could not be
retrospectively reported) and length of gestation, in com-
pleted days or weeks, had to be estimated by either ultra-
sound, date of last menstrual period, or a combination of the
two. Studies in which B12 was measured after conception
and before delivery were eligible. If a study was designed to
evaluate women or offspring with a specific condition (e.g.,
preeclampsia or congenital malformations) and there was a
marked overrepresentation of participants with such a condi-
tion, that study was excluded. Studies with fewer than 50
participants were not considered. Given the need to collabo-
rate with authors of the original studies, we included only
those studies published in 1998 or later.

Search methods

The electronic literature search was constructed by the
first author (T.R.) and a librarian trained in medical data-
base searches and was conducted in PubMed, Scopus,
Web of Knowledge, EBSCO-host (CINAHL), and OvidSP
(MEDLINE, EMBASE, and GLOBAL HEALTH), with
the date of the last access being August 2015. No language
restriction was applied. The reference lists of all studies for
which the full text was read were hand searched to find

additional eligible studies. Web Appendix 1 (available at
http://aje.oxfordjournals.org/) provides complete informa-
tion on the electronic searches.

Data collection

Electronic literature searches were carried out by the first
author (T.R.). Duplicates were removed and the eligibility of
all references were evaluated by screening of the titles and
abstracts by the first author (T.R.). The full texts of all poten-
tially eligible studies were read and independently assessed
for inclusion by 2 authors (T.R. and K.R.R.). A hand search
of reference lists was done independently by 2 authors (T.R.
and K.R.R. or M.J.T.). When multiple reports from the same
study were found, we used the most complete report.

Risk of bias was independently assessed by 2 authors
(T.R. and M.J.T.) based on a modified version of the
Newcastle-Ottawa Scale (range, 0–7) (14). Disagreements
were resolved by consulting a third reviewer (K.R.R.). We
defined high risk of bias as a score of 4 or less and moderate
to low risk as a score of 5–7.

Authors from all eligible studies were contacted to obtain
IPD, with each research group being approached at least 3
times. IPD was received without personal identification. For
studies in which IPD could not be shared, authors were
asked to provide results from prespecified re-analyses of their
data. When neither IPD nor re-analyses could be retrieved,
relevant estimates were extracted from the publications.

Variables

The main exposure of interest was B12 levels in mater-
nal serum or plasma samples. We calculated trimester-
specific standard-deviation scores based on studies that
provided IPD and re-analyzed aggregate data. Analyses
were performed for B12 deficiency, which was predefined
as a level less than 148 pmol/L (15), and B12 tertiles,
which were constructed based on included individual data
(tertile 1, <148 pmol/L; tertile 2, 148–216 pmol/L; and ter-
tile 3, >216 pmol/L).

The 3 predefined main outcomes were birth weight as a
continuous measure in grams, LBW (birth weight <2,500 g),
and small-for-gestational-age (SGA) birth (birth weight
standard-deviation score <10th percentile) (1). Birth weight
standard-deviation score was calculated using gestational age
at delivery and sex-specific reference standards published by
the INTERGROWTH 21st Project (16). We used birth
weight standard-deviation score as a proxy for fetal growth
and defined SGA birth as a proxy of restricted fetal growth.
Outcomes related to length of gestation were gestational age
at delivery (days) and preterm birth (gestational age at deliv-
ery <37 weeks).

Three main confounders were identified based on a priori
assumptions of confounding factors, availability of data, and
exploration of the potential effects of covariates on outcome
and exposure: maternal age (continuous), prepregnancy or
pregnancy body mass index (BMI; continuous), and parity
(nulliparous vs. primiparous or multiparous). Maternal weight
was used when information on BMI was unavailable. We
also considered smoking habits (smoking during pregnancy
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vs. not smoking) and highest completed educational level
(completed high school, which was equal to 13 years of edu-
cation, vs. did not complete high school).

Statistical analysis

We applied a 2-step IPD meta-analysis with random ef-
fects to pool the results across studies, including aggregate
data from individual studies when IPD was not available.
All presented results are adjusted for maternal age, BMI/
weight, and parity (the “main model”), unless otherwise
specified. Precision was assessed using 95% confidence
intervals.

Mean differences in the continuous outcomes birth
weight (grams), gestational age at delivery (days), and birth
weight standard-deviation score were analyzed using linear
regression. To estimate risk ratios, Poisson regression with
robust error variance (17) was used to analyze the dichoto-
mous outcomes LBW, SGA birth, and preterm birth.

We conducted a meta-analysis in which we evaluated
how B12 was associated with maternal weight. Publication
bias was explored using funnel plots. Heterogeneity between
the studies was explored by computing the I2 statistic and
was considered to be present when I2 was greater than 30%.
All statistical analyses were carried out using Stata SE, ver-
sion 13.1 (StataCorp LP, College Station, Texas). The statis-
tical analyses, including sensitivity analyses, are described in
more detail in Web Appendix 2.

RESULTS

Availability of data

Via the electronic literature search and hand search of ref-
erence lists, we identified 606 unique references (Figure 1).
Twenty-two studies met the eligibility criteria (11,993 obser-
vations), 18 of which were included in the meta-analyses
(11,216 observations). This represented 94% of all eligible

All References (n = 1,450)

Eligible Studies (n = 22)
No. of pregnancies = 11,993

IPD (n = 10)
No. of pregnancies = 8,928

Full-Text Evaluated (n = 89)

Unique References (n = 606)

Studies Included (n = 18)
No. of pregnancies = 11,216

Reanalyzed Data (n = 2)
No. of pregnancies = 973

Duplicate References Excluded (n = 844)

References Excluded Based on Title and Abstract 
(n = 517)

Studies Not Eligible (n = 67)

Incorrect study design (n = 12)
Vitamin B12 not measured in pregnancy (n = 18)
Outcomes of interest not available (n = 7)
Population of diseased women (n = 5)
Population size <50 (n = 3)
Newer or more complete report included (n = 13)
Studies published before 1998 (n = 9)

Studies Not Included (n = 4)
No. of pregnancies = 777

Data Abstracted From
Published Reports (n = 6)

No. of pregnancies = 1,315

Figure 1. Flow chart of studies included in at least 1 of the meta-analyses of the association between vitamin B12 and birth weight or length
of gestation. Four studies were not included because individual participant data (IPD) or reanalyses were not provided and results could not be
abstracted from the published reports.
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observations (18–35). Four eligible studies (777 observa-
tions) were not included because they neither reported on
the association of maternal B12 with either birth weight
or length of gestation nor provided the necessary IPD or
results from requested re-analyses (36–39). Fourteen of
the included studies reported estimates of the association
of B12 in pregnancy with either birth weight or length of
gestation and were qualitatively appraised in the system-
atic review section (10,563 observations) (18, 19, 21, 23–
25, 27, 29–35).

For the meta-analyses, we used IPD from 10 studies
(8,928 observations) (18, 19, 21–23, 26–29, 32), results
from re-analyses of 2 studies (973 observations) (20, 35),
and relevant information and estimates extracted from the
published reports of 6 studies (1,315 observations) for
which IPD or re-analyses of the original data were not pro-
vided (24, 25, 30, 31, 33, 34).

Details of eligible studies

Studies included in the meta-analyses are described in
Table 1; details of the eligible studies that were not
included are presented in Web Table 1 (36–39). Of the
included studies, 1 was conducted in North America (34),
9 in Europe (18, 19, 22, 25–28, 31, 32), 1 in Africa (30), 1
in Oceania (24), and 6 in Asia (20, 21, 23, 29, 33, 35). The
number of pregnancies studied ranged from 84 to 5,641.
B12 was measured during the first trimester in 7 studies
(19, 22, 23, 28, 31–33), during the second trimester in 15
studies (18–24, 26–29, 31–33, 35), and during the third tri-
mester in 12 studies (18, 20, 21, 23, 25, 27, 29, 30, 32–
35). Mean B12 concentrations in the first, second, and third
trimester were 219.8 (standard deviation, 128.2) pmol/L,
187.8 (standard deviation, 91.3) pmol/L, and 188.7 (stan-
dard deviation, 82.5) pmol/L, respectively. Preterm births
were excluded from 4 studies (25, 26, 31, 33).

Key maternal and newborn characteristics listed the
included studies are presented in Table 2. B12 deficiency
was identified in 0%–69% of pregnancies (median, 33%).
The incidence of LBW ranged from 0% to 33% (median,
6%), the incidence of preterm births ranged from 4% to
14% (median, 8%), and the incidence SGA birth ranged
from 5% to 32% (median, 11%). Higher maternal weight
was associated with lower maternal B12 level; a 1-
standard-deviation higher maternal BMI or weight was
associated with an 11-pmol/L decrease in B12 (95% confi-
dence interval (CI): −15, −7).

Systematic review

Birth weight and SGA birth. The association between
B12 and birth weight or risk of SGA birth was reported in
14 of 22 eligible studies. In 3 studies, a clear association
was reported: in one, birth weight was higher among B12-
deficient women than among nondeficient women (34); in
another, lower B12 was associated with higher birth weight
only among women with gestational diabetes mellitus (32).
Conversely, investigators in a third study reported that lower
values of B12 significantly increased the risk of SGA birth
(23). In the remaining 11 studies, there was weak evidence

of an inverse association in 3 studies (25, 27, 33) and no
association in 8 studies (18, 19, 21, 24, 29–31, 35).

Length of gestation. There were only 2 published reports
in which the authors reported on the association of B12 with
length of gestation or preterm birth. In the first study, re-
searchers observed that a higher B12 level was associated
with a longer length of gestation and a lower risk of preterm
birth, but the small sample size yielded low precision of the
estimates (21). In the second study, investigators did not find
evidence of an association between B12 and length of gesta-
tion (19). Evaluation of the risk of bias showed that the
scores ranged from 3 and 7 and that 2 studies were classified
as having a high risk of bias (see Web Table 2).

Meta-analysis of maternal B12 in relation to birth weight
and LBW

In the meta-analysis, we found no evidence of a linear
association between B12 and birth weight (Figure 2). The
adjusted estimate was a 5.1-g increase in birth weight per
each standard-deviation increase in B12 level (95% CI:
−10.9, 21.0; I2 = 30%).

Results of subgroup and sensitivity analyses are pre-
sented in Web Table 3. Stratification by country income
showed that there was an association between B12 level
and birth weight in low- and middle-income countries
but not in high-income countries. Heterogeneity among the
studies was explained largely by country income level and
maternal BMI or weight. Excluding a study that used late-
pregnancy BMI (29) instead of prepregnancy or early preg-
nancy BMI/weight, which were used in the other studies,
reduced the heterogeneity from I2 = 30% to I2 = 13% (data
not shown). In 1 study, investigators reported an associa-
tion between B12 and birth weight that deviated greatly
from those in the other studies (33). Excluding that study
did not notably change the effect estimate, but it did result
in a modest reduction in heterogeneity (from I2 = 30% to
I2 = 21%; data not shown). Sensitivity analyses in which
we excluded each of the included studies 1 by 1 and those
in which we excluded studies that only evaluated newborns
born at term did not meaningfully alter the association
between B12 and birth weight (data not shown).

Results for categories of B12 supported our main results.
Neither B12 deficiency nor B12 tertile was associated with
birth weight (see Web Table 4).

B12 deficiency was associated with a 15% (95% CI: 1,
31; I2 = 5%) higher risk of LBW (Figure 3A). The funnel
plot for B12 and birth weight indicated a low risk of publi-
cation bias (see Web Figure 1). Because birth weight may
be regarded as a summary measure of fetal growth and ges-
tational age, we further performed analyses to assess a pos-
sible influence of B12 on these factors.

Meta-analysis of maternal B12 in relation to length
of gestation and preterm birth

The analyses did not support a linear association
between maternal B12 levels and length of gestation in
days; the length of gestation increased by 0.1 days (95%
CI: −0.2, 0.3; I2 = 0%) per each 1-standard-deviation
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Table 1. Characteristics of Studies Included in the Meta-Analysis

First Author, Year
(Reference No.) Type of Data No. Country Study Years Vitamin B12

Analysis Method

Week of B12 Measurement Included in Specific Meta-Analysesa

Range Median Birth
Weight LBW SGA

Birth
Birth Weight
SD Score

Length of
Gestation

Preterm
Birth

Baker, 2009 (18) IPD 290 United Kingdom 2004–2007 RIA 27–43 30 Yes Yes Yes Yes Yes Yes

Bergen, 2012 (19) IPD 5,641 The Netherlands 2002–2006 ECL 5–18 13 Yes Yes Yes Yes Yes Yes

Bhate, 2012 (20) Reanalysed
data

214 India 2004–2006 Microbiological 24–30 28 Yes Yes Yes Yes

Chen, 2015 (21) IPD 988 Singapore 2009–2010 ECL 26–29 27 Yes Yes Yes Yes Yes Yes

Dayaldasani, 2014
(22)

IPD 187 Spain 2011 ECL 3–23 10 Yesb Yesb Yesb Yesb Yesb Yesb

Dwarkanath, 2013
(23)

IPD 344 India 2001–2003 ECL T1, 5–19; T2,
20–29; T3,
30–39

T1, 12; T2,
24; T3, 34

Yes Yes Yes Yes Yes Yes

Furness, 2013 (24) Data from
publication

84 Australia N/A ECL 18–20 N/A Yesc

Halicioglu, 2012 (25) Data from
publication

208 Turkey 2008 ECL >37 N/A Yesd

Hay, 2010 (26) IPD 149 Norway 1997 Microbiological 17–19 N/A Yes

Hogeveen, 2010
(27)

IPD 363 The Netherlands 2002–2004 Microbiological 27–38 31 Yese Yese Yese Yese Yese Yese

Kaymaz, 2011 (28) IPD 103 Turkey 2007 ECL 11–14 13 Yes Yes Yes Yes

Krishnaveni, 2014
(29)

IPD 654 India 1997–1998 Microbiological 22–35 26 Yes Yes Yes Yes Yes Yes

Mamabolo, 2006
(30)

Data from
publication

219 South Africa 1999–2000 RIA 28–36 N/A Yesc

Relton, 2005 (31) Data from
publication

500 United Kingdom 2000–2002 RIA N/A 11.5 (5.8)f Yese

Sukumar, 2011 (32) IPD 209 United Kingdom 2005–2010 RIA (n = 182),
ECL (n = 27)

0–37 24 Yes Yes Yes Yes Yes Yes

Takimoto, 2007 (33) Data from
publication

88 Japan 2001–2003 ECL T1, 7–14; T3,
34–36

N/A Yesg

Wu, 2013 (34) Data from
publication

216 Canada N/A RIA N/A 36 Yesd

Yajnik, 2008 (35) Reanalysed
data

759 India 1994–1996 Microbiological N/A T2, 18 (2)f Yes Yes Yes Yes

Abbreviations: ECL, electroluminescence; IPD, individual participant data; N/A, not available; RIA, radioimmunoassay; SD, standard deviation; SGA, small-for-gestational-age; T1, first
trimester; T2, second trimester; T3, third trimester.

a Included in the analyses of the exposures vitamin B12 SD score and B12 deficiency, both crude and adjusted (maternal age, body mass index or weight, and parity), unless otherwise
specified.

b Does not contribute to the analyses of vitamin B12 deficiency (none of the participants were deficient).
c Level of vitamin B12 in a crude analysis among those who were born SGA versus those who were not.
d Birth weight in a crude analysis among those who were vitamin B12–deficient versus those who were not.
e Crude analysis.
f Values are expressed as mean (SD).
g Adjusted analysis (maternal age, body mass index or weight, and parity).
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Table 2. Maternal and Newborn Characteristics of Studies Included in the Meta-Analysis

First Author, Year
(Reference No.)

Maternal Age,
years, mean

(SD)

Maternal
BMIa, mean

(SD)

Para 0 Vitamin B12,
pmol/L, mean

(SD)

Vitamin B12
Deficientb Birth Weight,

g, mean (SD)

LBWc SGA Birthd Length of
Gestation,

weeks, mean
(SD)

Preterm
Birthe

No. % No. % No. % No. % No. %

Baker, 2009 (18) 18 (1) 65 (14)e 277 96 192 (84) 93 32 3,232 (534) 26 9 33 12 39.7 (1.8) 22 8

Bergen, 2012 (19) 30 (5) 25 (5) 3,208 57 188 (93) 2,098 37 3,418 (563) 280 5 412 7 39.9 (1.8) 268 5

Bhate, 2012 (20) 23 (3) 20 (3) 165 71 145 (84) 148 69 2,707 (411) 49 25 N/A N/A 38.6 (2.6) 18 8

Chen, 2015 (21) 31 (5) 66 (12)f 420 43 220 (79) 161 16 3,101 (449) 76 8 86 9 38.6 (1.4) 85 9

Dayaldasani, 2014 (22) 30 (6) 26 (5) 96 51 387 (123) 0 0 3,267 (526) 11 6 12 7 38.8 (1.9) 14 8

Dwarkanath, 2013 (23) 24 (4) 53 (10)f 203 59 205 (115)g 100 29g 2,771 (498) 95 28 102 30 38.3 (1.7) 47 14

Furness, 2013h (24) 33 (7) 27 (5) N/A N/A 234 (129) N/A N/A 3,390 (789) N/A N/A 21 25i 38.8 (2.9) N/A N/A

Halicioglu, 2012h (25) 28 (5) N/A N/A N/A 120j 99 48k 3,357 (466) N/A N/A N/A N/A N/A N/A N/A

Hay, 2010 (26) 30 (4) 65 (10)f 67 45 294 (87) 2 1 3,727 (476) 0 0 N/A N/A N/A N/A N/A

Hogeveen, 2010 (27) 33 (4) N/A 109 30 186 (69) 120 34 3,436 (545) 18 5 19 5 39.5 (1.6) 21 6

Kaymaz, 2011 (28) 27 (3) 24 (4) 45 44 152 (59) 54 52 3,241 (553) 5 5 N/A N/A 38.4 (1.9) 9 9

Krishnaveni, 2014 (29) 24 (4) 24 (4) 331 51 187 (100) 264 40 2,857 (475) 126 19 202 32 39.0 (1.8) 63 10

Mamabolo, 2006h (30) 25 (7) 27 (4) N/A N/A 175 (77) 36 16l 3,120 (550) N/A N/A 66 30m N/A N/A N/A

Relton, 2005h (31) 28 (6)n N/A N/A 43n 239 (97) N/A N/A 3,430 (470)n N/A N/A N/A N/A N/A N/A N/A

Sukumar, 2011 (32) 31 (6) 27 (6) 68 33 168 (126) 114 55 3,381 (558) 10 5 16 8 39.3 (1.7) 9 4

Takimoto, 2007h (33) 29 (5) 21 (3) N/A N/A 405 (146)g 13 16o 3,120 (411) 5 5 N/A N/A 39.6 (1.0) N/A N/A

Wu, 2013h (34) 33 (4) N/A N/A N/A 224 (96) 51 24 3,486 (452) N/A N/A N/A N/A N/A N/A N/A

Yajnik, 2008 (35) 21 (4) 18 (2) 252 31 151 (78) 447 59 2,612 (392) 230 33 N/A N/A 38.8 (2.1) 87 11

Abbreviations: BMI, body mass index; LBW, low birth weight; N/A, not available; SD, standard deviaton; SGA, small-for-gestational-age.
a Weight (kg)/height (m)2.
b Vitamin B12 level <148 pmol/L.
c Birth weight <2,500 g.
d Birth weight SD score (i.e., accounting for length of gestation and sex) below the 10th percentile.
e Length of gestation <37 weeks.
f Values are expressed in kilograms because BMI was not available.
g First measurement.
h Data extracted from publication.
i Serial tapering of growth in abdominal circumference and of estimated fetal weight below the 10th percentile of an Australian growth chart.
j Values are expressed as median (range not available).
k Vitamin B12 level ≤118 pmol/L.
l B12 deficiency not defined.
m Lowest birth weight tertile (mean birth weight = 2,940 g) used as an approximation of SGA birth for the purpose of this review.
n Based on a larger study population than the subgroup with available vitamin B12 data included in this review (n = 974–997).
o Third trimester.
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increase of B12. However, increasing levels of B12 were
associated with decreasing risk of preterm birth (per 1-
standard-deviation increase in B12, risk ratio = 0.89, 95%
CI: 0.82, 0.97; I2 = 0%) (Web Figure 2). Accordingly, B12
deficiency in pregnancy was associated with a 21% higher
risk of preterm birth (95% CI: −1, 49; I2 = 20%) (Figure 3B).
The associations between B12 and preterm birth were similar
within all subgroup and sensitivity analyses, although there
was a loss of precision in these subgroup analyses because of
smaller sample sizes (see Web Table 5).

Meta-analysis of maternal B12 in relation to birth weight
standard-deviation score and SGA birth

B12 was not associated with birth weight standard-
deviation scores in the main analysis (see Web Figure 3).
However, B12 was associated with birth weight standard-
deviation score in low- and middle-income countries (per
1-standard-deviation increase in B12, standard deviation,
0.08, 95% CI: 0.03, 0.14; I2 = 0%) but not in high-income
countries (standard deviation, −0.02, 95% CI: −0.05, 0.02;
I2 = 23%). Women with a B12 deficiency were not at higher
risk of SGA births than nondeficient women (Figure 3C),
and B12 levels were similar in SGA and non-SGA pregnan-
cies (see Web Table 6).

DISCUSSION

The results from the present systematic review and meta-
analysis do not support any linear association between
maternal B12 levels in pregnancy and offspring birth weight.

However, our findings provide evidence that lower maternal
B12 levels are associated with a higher risk of preterm birth
and that the risk of preterm birth is particularly high in the
presence of B12 deficiency during pregnancy.

Strengths and limitations

A strength of this study is the use of IPD and re-
analyzed data. Because there was substantial heterogeneity
in the published analyses, we could not use a traditional
meta-analysis to answer our research questions. Incomplete
or selective reporting may reduce the replicability of stud-
ies and distort the literature (40). This is illustrated by com-
paring the findings of this review with those of a recently
published systematic review by Sukumar et al. (9) that
included traditional meta-analysis of the association bet-
ween B12 and birth weight. In that study, the authors
reported an odds ratio of 1.70 (95% CI: 1.16, 2.50;
I2 = 84%) for the association between low B12 level and
adverse birth weight. In the present study, we found a more
moderate association in a comparable analysis of B12 defi-
ciency in relation to LBW (risk ratio = 1.15, 95% CI: 1.01,
1.31; I2 = 5%). One reason for the discrepant results may
be that Sukumar et al. depended solely on data presented in
the published reports and were unable to include results
that were reported as being insignificant, as in the largest
individual study in the present review (19). The compara-
ble meta-analysis in the present review included roughly
10 times as many pregnancies as the meta-analysis in the
review by Sukumar et al. Additionally, of the 8 individual
results included in the meta-analysis by Sukumar et al., 5
evaluated mostly the same women from a single original
study, which exaggerated the influence of a single outlying
study (8, 23). By collecting IPD and requesting re-analyses
of contributing studies, we were able to standardize the
analyses across most of the included studies, thereby reduc-
ing heterogeneity and facilitating interpretation of results.
Compared with the review by Sukumar et al. in which they
presented meta-analyses with high levels of heterogeneity
(I2 scores from 74% to 98% in the primary analyses), the
present study had I2 scores between 0% and 30% in the pri-
mary analyses. Additionally, in the present study, we were
able to conduct subgroup and sensitivity analyses that
included more complete adjustment for important confoun-
ders (e.g., maternal weight).

We included 94% of all eligible participants, which per-
mitted an unbiased summary of the published literature.
Given the relatively large number of included subjects, we
had higher power to evaluate findings reported with low
precision in individual studies. We tested the stability of
our findings with a broad range of sensitivity analyses.

Another strength was that our analyses were not post
hoc but followed a detailed protocol. We performed a thor-
ough literature search without language restrictions and
systematically reviewed all eligible studies.

There are several limitations. Unpublished studies were
not considered for this review, which potentially could
have skewed the estimates. However, a funnel plot did not
suggest publication bias. We were unable to include 4 eli-
gible studies (777 observations; 6% of all observations).

Figure 2. Forest plot presenting the association between maternal
vitamin B12 level and birth weight. Results are from a meta-analysis
that was adjusted for maternal age, parity, and body mass index or
weight. Effect estimates are expressed as change in birth weight
per a 1-standard-deviation increase in vitamin B12 (i.e., mean differ-
ence). CI, confidence interval.
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Given the small number of observations, it is unlikely that
inclusion of these remaining studies would have impor-
tantly influenced our main results.

Our approximations of fetal growth and restricted fetal
growth that were created using gestational age- and sex-
specific birth weight charts are suboptimal because these
outcomes are ideally estimated using serial ultrasound mea-
surements during pregnancy (41). Furthermore, we did not
have sufficient data available to evaluate the possible impli-
cations of low levels of B12 during different periods in
pregnancy in the same woman. Sensitivity analyses strati-
fied by trimester of B12 measurement across studies, how-
ever, did not reveal important variation in the associations
between B12 and the outcomes of interest.

Importantly, B12 deficiency may be a proxy for inade-
quate nutritional status, and it is possible that some of our
findings are related to nutritional status and not specifically
to B12. A predominantly plant-based diet is low in B12
but also other nutrients, such as vitamin D and zinc, that to
some degree may be associated with preterm birth (42–44).
We did not have information on dietary intake or blood le-
vels of these nutrients. Nutritional status could explain the
present finding of an association between B12 and birth
weight in low- and middle-income countries but not high-
income countries. However, lower vitamin B12 levels were
associated with higher risk of preterm birth irrespective of
country income. It seems less likely that nutritional status
can fully explain this finding.

Figure 3 Forest plots presenting the association between maternal vitamin B12 deficiency and the risk of low birth weight (A), preterm birth (B),
and small-for-gestational-age birth (C). Results are from meta-analyses that were adjusted for maternal age, parity, and body mass index or weight.
Effect estimate expressed as risk ratio (RR) of the outcome when comparing B12-deficient women with nondeficient women. CI, confidence interval.
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Mixing of effects is inherent in observational studies, and
residual confounding cannot be ruled out. We emphasize
that we are reporting associations and that causal effects
must be explored through trials (see below). Reassuringly,
we found little discrepancy in the pooled results of the
adjusted main models as compared with extended adjusted
models (i.e., additional adjustment for maternal educational
level and smoking habits).

Possible explanation of findings

Low birth weight is a result of preterm birth, of being
born SGA at term, or a combination of the two (45).
Although we found a higher risk of preterm birth and
LBW among infants born to B12-deficient women, there
was little evidence that maternal B12 levels influenced off-
spring birth weight standard-deviation score or SGA status.
It seems more likely that the observed higher risk for LBW
in B12-deficient women can be explained by preterm birth
rather than by reduced fetal growth.

Higher B12 level was associated with higher birth
weight in low- and middle-income countries but not in
high-income countries. Four of the 5 studies included in
the low- and middle-income group were conducted in an
Indian population. Therefore, generalization of these results
to low- or middle-income countries outside of India should
be treated with caution. Indian women generally have
lower dietary intakes of B12 because of their mainly vege-
tarian diet, making them susceptible to B12 deficiency
(46). Additionally, Indian newborns are among the smallest
in the world (45). Our findings suggest that pregnancies
already at the greatest risk of resulting in small newborns
were the ones that were most vulnerable to low levels of
B12. The association between B12 and the risk of preterm
birth was consistent across studies in both high-income and
low- and middle-income countries, and generalization to
countries not studied may be feasible.

In line with our findings, maternal obesity has been asso-
ciated with B12 deficiency in several populations (47, 48). It
has been hypothesized that this association is due to altered
fat distribution and metabolism in overweight women com-
pared with normal-weight women (47). Maternal weight is
positively correlated with newborn weight (49), and failure
to adjust for maternal weight may underestimate a positive
association between B12 and birth weight.

Potential mechanism of action

Preterm birth may be categorized into spontaneous and
medically indicated, with varying causes (50). Unfortunately,
information on spontaneous versus medically indicated pre-
term births were not available to us. Medically indicated
preterm births are most commonly caused by severe pre-
eclampsia or severely restricted fetal growth (51). Our find-
ings do not support an association between maternal level of
B12 and fetal growth. Maternal B12 level might be associ-
ated with risk of preeclampsia, potentially through elevated
homocysteine levels; however, the results from reports are
discrepant (52–54). The rate of medically indicated preterm
births is higher in high-income countries than in low- and

middle-income countries (55). In analysis stratified by coun-
try income, we found similar associations between B12 and
risk of preterm birth in low-, middle-, and high-income
countries. Still, this finding does not link B12 to specific eti-
ologies of preterm birth, which is a topic that deserves fur-
ther studies.

It is possible that supplementation of B12 or folic acid,
with a subsequent reduction of homocysteine, increases birth
weight and length of gestation. However, in a Cochrane
review, Lassi et al. (56) concluded that supplementation
with folic acid during pregnancy did not reduce the risk of
either preterm birth or LBW. In 2 small (68 pregnancies and
256 pregnancies, respectively) randomized controlled trials
of B12 supplementation during pregnancy, investigators re-
ported on birth weight and length of gestation (57, 58).
In both, B12 plasma levels were higher in the supplement-
ed group than in the control group, but no reduction in
homocysteine levels was seen. No differences were observed
in birth weight, length of gestation, or frequency of LBW
births or preterm births in the supplemented group com-
pared with the control group in either study (C. Duggan,
Harvard University, personal communication, 2015) (57, 58).
However, the studies were not powered to detect small but
meaningful differences in preterm birth.

Context

There are 15 million preterm births and 20 million in-
fants born with LBWs globally each year (1). The greatest
burden of LBW is found in South Asia, whereas preterm
birth is highest in Africa (1). Preterm birth is the leading
cause of neonatal deaths (1). In the era of The Millennium
Development Goals (1990–2015), the postneonatal mortal-
ity rate for children younger than 5 years of age was
reduced by 58% (2). The reduction in neonatal mortality
was less pronounced (47%) (2). Prevention of preterm birth
is thus a key strategy for reducing neonatal deaths and
reaching the new target of a mortality rate in children
younger than 5 years of age of 25 per 1,000 live births by
2030, down from 43 per 1,000 in 2015 (2).

Our systematic review was not designed to study the
prevalence of B12 deficiency during pregnancy. However,
this condition was common in the studies in our review,
and the rates were comparable to those in a systematic
review of B12 deficiency during pregnancy (9). A large
group of women are thus affected by a potential prevent-
able risk of preterm birth.

Conclusion and implications for clinical practice and
future research

B12 deficiency during pregnancy is common. Results of
the present systematic review in which we included IPD
meta-analyses provide robust evidence that lower B12 le-
vels during pregnancy are associated with a higher risk of
preterm birth, particularly in B12-deficient women. Our
findings support the need to conduct randomized controlled
trials to evaluate whether maternal B12 supplementation in
pregnancy reduces the risk of preterm birth.
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